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SUMMARY 
This paper presents a mathematical model for heat or mass transfer from an open cavity. It is assumed that the 
P6clet number, based on conditions at the cavity, and the Prandtl number are both large. The model assumes heat- 
or mass-transfer boundary layers at the rim of the cavity vortex flow. Heat or mass exchange with the surrounding 
fluid occurs in a free boundary layer which spans the mouth of the cavity. It is shown that the solution depends 
upon a single parameter ~o only. This parameter is determined by the flow field. For small and large values of co 
matched asymptotic expansions are presented. The model is illustrated for a few simple flows in closed cavities. 
Etching, clot formation in flowing blood, lubrication and cooling of rough surfaces are mentioned as possible fields 
of application. 

1. Introduction 

Several reasons can be given for the considerable attention that has been paid in the 
literature to flows past open cavities and cut-outs, especially when seen in connection with 
the transfer of heat or mass. Reiman and Sabersky [1] mention that heat transfer from 

rough surfaces can be understood more completely when the transfer of heat from cavities 
has been studied. It is clear that the transfer of heat from cavities plays an important  part  in 
the fields of bearing lubrication and turbine flow. A rather interesting application in the field 

of biomechanics was given in a recent study by Stevenson [2]. This author suggested that 
clot formation in flowing blood (thrombogenesis) might be explained by a study of mass 

transfer from open cavities that may exist in the artery wall. Surface reactions at the cavity 

wall may produce certain materials, which remain trapped in the vortex that exists in the 
cavity. A high concentration of these materials could lead to thrombogenesis. Other 

applications, particularly in the field of aerodynamics can be found in a review paper by 
Chilcott [3]. 

The present study was motivated by a desire to obtain a better understanding of certain 

etching processes. The problem put before us was that the etching process is strongly 

dependent upon the size of the orifice of the cavity (Goosen and Van Ruler [4]). These 
authors did an experiment in which pure etchant was forced to flow along a surface in which 

minute cavities were embedded. It  was noticed that initially the etching speed was 
independent of the cavity size. However, when etching had gone down to a depth which is 
comparable to the width of the orifice of the cavity, the etching proceeded at a speed that 
was noticeably less than the initial speed. In the experiments conducted by Goosen and Van 
Ruler the Reynolds number, based on the size of the cavity, was moderate, whereas the 
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P6clet number was very large. We may therefore expect that the transfer processes are 
restricted to a mass-transfer boundary layer near the wall of the cavity. Following a similar 
heat-transfer model, which seems to have been considered first in some detail by Miles [5] 
and which is also described in a paper by Fenton and White [6], there is a free mass-transfer 
boundary layer which spans the mouth of the cavity and through which a convective and 
diffusive exchange of impure etchant takes place with the surrounding fluid. In this model 
the transfer of heat or mass is restricted to the rim of the cavity vortex flow. In the bulk of the 
vortex the impurities are distributed uniformly. This model is supported by numerical 
experiments on heat transfer in a driven cavity (Burggraf [7], Spalding et al. [8]). The 
analogous case of vorticity transfer in closed-streamline flows was considered by Batchelor 

[92. 
If the cavity becomes deep enough, a second vortex will emerge near the bottom of the 

cavity (Pan and Acrivos [10]). Using the mass-transfer boundary-layer model described 
above we may now understand the decrease in etching speed. Indeed, the materials etched 
away in the lower reaches of the cavity have to circulate round two vortices before an 
exchange with the surrounding fluid can take place. We may also expect that the uniform 
concentration within the core of the lower vortex will be higher than when only one vortex is 
present. This will lower the concentration gradients down in the cavity. 

In this paper we shall formulate our problem in terms of heat transfer with a fixed cavity 
wall. In a mass-transfer problem the cavity becomes gradually eroded, but this process 
seems to be slow enough to justify a quasi-steady approach. In that case a formulation in 
terms of heat transfer is analogous to that in terms of a concentration, but the first seems to 
be in more general use. Of course, the heat-transfer results can be translated directly into 
their mass-transfer analogue. The analysis will be restricted to two-dimensional cavities and 
we shall consider the case of a single vortex only. 

Miles's approach to heat exchange from a cavity vortex was to consider the total heat 
transfer from the cavity wall to the wall boundary layer and to translate this into a line 
source of heat at the separation lip, i.e. at the leading edge of the free boundary layer. The 
'total heat transfer is then considered to be the sum of two separate forms of heat transfer. 
The first is that obtained from the boundary layer resulting from the line source and of 
course only that part is considered which leaves the cavity at the free-stream side of the re- 
attachment point. The second factor contributing to heat transfer is the flow of heat from the 
bulk to the free stream. 

In our analysis we shall improve upon these older ideas in that we shall attempt to 
establish a more realistic link between the two boundary layers. This means that we shall 
abandon the line-source idea and replace it by a rule which transforms the final temperature 
profile of the wall boundary layer into the initial one of the free boundary layer. Conversely, 
there will be a close connection between the final temperature profile of the free boundary 
layer and the initial one of the wall boundary layer. This process is greatly facilitated by the 
fact that we consider fluids with a large Prandtl number (or Schmidt number in the case of 
etching). We may then use a very simple velocity field to describe the convective terms in the 
boundary-layer equations. For this very reason the formulation of the problem is inde- 
pendent of the Reynolds number. 
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adiabatic~ ~ adiobotlc 
X = 0  $ = 0  

s=so )0o x-~o 

Figure 1. Geometrical model of an open cavity. 

2. The mathematical model 

Fig. 1 may serve as a model of a two-dimensional cavity, i.e. a depression in an otherwise 
smooth surface. A fluid flows along this surface, but the exact nature of this flow does not 
interest us here. All we need to know is that u o is a velocity characteristic for this flow. Under 
very general conditions the steady state reveals a trapped circulatory flow inside this cavity. 
The streamline separating this vortex from the outer flow is given in Fig. 1. The exact 
location of the point of attachment of the dividing streamline has been a matter of serious 
discussion in the literature. However, most of this literature refers to rectangular cut-outs. In 
general terms, the following picture transpires. For large Reynolds numbers the dividing 
streamline connects the edges of the cavity. For small Reynolds numbers there does not 
seem to be complete agreement. Takematsu's paper [11] on the slow viscous flow past a 
cavity of infinite depth arrives at the conclusion that the flow separates inside the cavity at a 
point beyond but rather close to the edge. A numerical study by Stevenson [2] on cavities of 
finite depth seems to confirm this conclusion. O'Brien [12] on the other hand leaves the 
matter undecided owing to loss of accuracy in the numerical procedure which she employed. 
Macagno and Hung [13], considering the flow in an expanding conduit find separation at 
the edge. 

Be this as it may, in this paper we shall carry out the analysis assuming separation at the 
edges of the cavity. In the case of cusped edges this seems to be a reasonable assumption. 
Later we shall outline a modification to our analysis which covers the alternative separation 
phenomena, including the case of multiple separation' occurring in deep cavities or in 
cavities with sharp internal corners. 

To describe the temperature boundary layer along the dividing stream line, we use a 
coordinate system (x, y), where x measures the distance along and y the distance normal to 
the dividing stream line. If the velocity distribution along y = 0 is given by u = u(x) we can 
write the equation for heat transport as 

0T ~ 02T 
u ( x ) ~  x yu ' (x)  = x ~y2 ' (2.1) 

where we have used the fact that the Prandtl number is much larger than unity. Indeed, if Pr 
is large, temperature variations are much larger than velocity variations, so that we may use 
an approximate representation of the velocity field. We have to find a solution to this 
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1 equation in the region 0 ~< x <~ x o,-~6y < y < ~6y. Here 8y formally represents the thick- 
ness of ~he free boundary layer. 

Along the wall of the cavity we use the coordinate system (s, n) with 0 ~< s ~< s o, 0 ~<n 
< O,. Again using the condition Pr >> 1 we write the energy equation as 

OT~ _ ½e,(s)n2 OT~ CZT~ (2.2) 
e ( s ) n ~ s  ~-n = t¢ On 2 , 

where a(s) is the normal derivative of the longitudinal velocity evaluated at n = 0. We use T~ 
to denote the temperature inside the wall boundary layer. 

The boundary conditions are 

T i = T  at n = 0 ,  O < . s < . s  o, (2.3) 

0T, 
On = 0  if n = f i , ,  0 ~ s ~ < s  o , (2.4) 

0T 
_ x (2.5) = 0  if y - 2 S y ,  O~<x~<x o, Oy 

(2.6) T = T o if y =  -28r,  0~<x~<x o. 

In addition to these boundary conditions we need to establish a connection between the two 
boundary layers, i.e. the initial condition at x = 0 must  somehow be related to the end 
condition at s = s o. At the location where x = x 0 and s = 0 a similar situation exists. It is 
common practice in boundary-layer theory not to bother too much about conditions at the 
leading edge, the reason being that downstream the influence of the initial condition 
becomes increasingly smaller. It is the wall conditions that determine boundary-layer 
behaviour. In the absence of wall conditions, as is the case with jets and free boundary layers, 
or in the case of inactive wall conditions, e.g. an adiabatic wall, the preservation of an overall 
quantity, such as total momentum or total heat, determines the boundary layer. The precise 
distribution of this quantity at the leading edge is of secondary importance. 

It would seem that such an approach will be inadequate here. Indeed, the boundary layers 
considered here are of finite length. Moreover, the flow is periodic so that a true 
"downstream" does not exist. We therefore feel that it will be necessary to use a temperature 
profile at the leading edges of each of the boundary layers. A complete answer to this 
problem can only be obtained by a detailed study of the flow and heat transfer characteris- 
tics near the edge of the cavity. However, this appears to be far too complicated. The next 
best thing will be to relate the temperature profile just before the leading edge to that 
immediately past it. Since the flow field changes very rapidly near the edges of the cavity, it is 
not unreasonable to assume that the temperature remains constant along the streamlines in 
that region. This leads to the relations 

T i ( s , n ) ~ T ( x , y ) ;  ½~(s)n 2 = u ( x ) y  if s ° - s  ~ 1  and x ~ 1, 
S O X 0 

(2.7) 

T(x,y)~T~(s,n); u(x)y=½a(s)n 2 if x ° - x  ~ 1  and s ~ 1 .  
Xo SO 

(2.8) 
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From the definition of (2.7) and (2.8) it is clear that these conditions apply only in the region 
y >/0. To complete the set of boundary conditions we must therefore put 

T(0, y ) = T  o if - ~ < y < 0 .  (2.9) 

The problem is now to solve the system consisting of the equations (2.1)-(2.9). 

3. Solution 

Let us introduce the following transformations. In the region 0 ~< x ~< x o we have 

T = T O + ( T  w - To)O(X,  Y), (3.1) 

{fo }, X = u(p)dp X o (3.2) 

Y = yu(x ) (~cXo) - l ,  (3.3) 

X o = u(p)dp, (3.4) 

and in the region 0 ~< s ~< s o we have 

T~ = T O + ( T  - To)O(S, N) ,  (3.5) 

g = e~(s)n(KSo)-~,  (3.7) 

S o = c¢(p)dp. (3.8) 

Using these transformations we can easily write the system (2.1)-(2.6) as 

~o Q (~2~ 

0 X  t~Y 2 
(0~<X~<I,  - ~ <  Y <  ~) ,  

oq ~ 0 if Y ~  - 0% (3.9) 

d0 
- - - * 0  if Y ~ o o .  
OY 
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It is the largeness of the P6clet number which allows us to use + oo as upper and lower 
bounds. Further we have 

N 
00 020 
6~S 0 N  2 

(0~<S~< 1, 0 ~< N < oo), 

0 = 1 if N = 0, (3.10) 

00 
- - - ~ 0  if N - o ~ .  
ON 

The patching conditions (2.7) and (2.8) are transformed into 

0(S, N) = ~(X, coN 2) if (1 - S) ~ 1 and X ~ 1, 

,.9(X, CON 2) = O(S, N) if (1 - X) ~ 1 and S ~ 1, 

(3.11) 

(3.12) 

and there does not seem to be any objection to replacing these by 

0(1, N) = 0(0, CON2); ,-9(1, ogN 2) = 0(0, N) (3.13) 

where 

1 (xSo) ~ 
co - (3.14) 

2 (xXo)~ 

is the only parameter left in the problem. Condition (2.9) is rendered into 

~q(0, Y ) = 0  if - ~ <  Y < 0 .  (3.15) 

We have now arrived at a formulation of the problem which is independent of the velocity 
distribution. The velocity is incorporated in the independent variables and in co. 

A formal solution to the equations (3.9) and (3.10) subject to the as yet unknown initial 
profiles at S = 0 and X = 0 is 

fO (p - y)2 ~(X, Y) - 1 ~(O, P)e- 4x dP, 
2zr~X ½ 

(3.16) 

(1N33 
F \ 3  9S]  1 fo~ N'+e~ ( 2 N ' IP~)  O(S, N) - F(~) + ~ -  N½P~e - 9S I~. ~ T 0(0, P)dP, (3.17) 

where F(a, b) = S~ ta- 1 e-tdt is the incomplete Gamma function and I~(P) is a modified 
Bessel function. In deriving (3.16) the boundary condition (3.15) has been used. If we apply 
now the conditions of equation (3.13) we obtain a system of two integral equations for the 
unknown profiles 0(0, N) and 0(1, N): 

0(0, N) = ~ -  Pe-~-(e~-s~)~O(1, P)dP, (3.18) 
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[1 N3X~ 

O(1, N ) _ F ~  ~ ' ~ - )  f0 ~ N3+p3 + N e e- 9 --I~(~N~P~)O(O, P)dP. (3.19) 

It does not seem possible to find analytical solutions to these equations, but it is a rather 
simple matter to find numerical ones. In the method applied by us, we divide the region of 
integration into two separate intervals: a finite interval [0, P J  and an infinite [P,,, ~ ] .  At P 
= P,, the profiles are assumed to have attained the (as yet unknown) asymptotic values. The 
finite interval is further divided into a great many subintervals. We then introduce two 
vectors, the entries of which are the unknown values of 0(0, N) and 0(1, N) at the vertices of 
these intervals. The integral over the interval [0, Pm] is then reduced to a sum of integrals 
over each of the subintervals, where the intermediate values of 0(0, N) and 0(1, N) are found 
by linear interpolation. It is essential that we should not use a pointwise representation of 
the kernels of the integral equations. Indeed, these kernels can vary rather rapidly, even on 
subintervals. This is why an accurate calculation of subintegrals is required. 

The integrals over the interval [Pro, ~ ]  can be carried out at once, and these are either 
proportional to 0(0, Pm) or to 0(1, Pro)" The problem is now reduced to the solution of linear 
algebraic equations and this solution can be found without much further ado. 

Some temperature profiles inside the cavity are given in Figs. 2-4, whereas Fig. 5 displays 
profiles in the mixing region. It is seen that there is a rather strong dependence upon the 
parameter w. It is found that for ~o large the heat loss incurred in the mixing region is rapidly 
compensated for inside the cavity. At S = 0.1 the temperature profile does not differ very 
much from that at S = 1. On the other hand, for w = 0.1 there is still a long way to go at S 
=0.1. 

0.~ \ 
\ \  

0.4 

0.2 

1 

Tw-To 

CO=O/ 

0 
0 1 2 3 4t. 5 

- - ~ -  N 

1 

/ 
~6 

- ~ = 0  o3 =1.0 

0,4 

0 
0 I 2 3 

Figure 2. Temperature profiles in wall boundary layer (w = 0.1). 

Figure 3. Temperature profiles in wall boundary layer (w = 1.0). 

Journal of Engineering Math., Vol. 12 (1978) 129-155 



136 H. K. Kuiken 

1.0 

- ' ~ -  

/S=O 

0.6 - ~  , 

C0=3o0 
a$ 

O.:J 

f 
I ' l  ~ 1  

0.6 

- I  0 I 

60=1.0 

o 
0 0.5 1 1.5 2 -2 2 3 

- ~ - ~ N  ~ Y  

Figure 4. Temperature profiles in wall boundary layer (co = 3.0). 

Figure 5. Temperature profiles in free boundary layer (09 = 1.0). 

The asymptotic temperature profile is also strongly dependent upon 09. This is shown 
clearly by Fig. 6, where we show the temperature in the core. Apparently, for a~ >> 1, the 
cavity is almost closed, since the temperature is distributed almost uniformly throughout the 
cavity. The smallness of the orifice is the limiting factor in the heat transfer process. For a 
given orifice, a given velocity distribution at the orifice and a given temperature difference, 
there is a limit to the amount of heat that can leave the cavity and this will be reached for e~ 
"-'~ O0. 

For 09 ~ 0, it is the relative shortness of the cavity wall which is the limiting factor. Again, 
for given conditions near the wall there is a limit to the amount of heat that can leave the 

I 
Tc-__~To 

0.4 

0.'- 

0 - - ' ~ 1  I I 
0.01 2 5 0 J  2 5 1 

i I I I 
2 5 ~0 2 ~ I00 

Figure 6. Temperature in the core as a function of ¢o. 
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wall and this is reached if co = 0. Then the cavity is as open as is possible. It should be 
emphasized that the terms "open" and "closed" are not meant to be solely geometrical. The 
terminology is based upon the parameter o9 and thus it involves the velocity distribution and 
the thermal diffusivity of the particular fluid in addition to the actual geometry of the cavity. 

The local heat transfer at the cavity wall is 

qw= - k  On ,=o 

where k is the thermal conductivity. Using the transformation formulae (3.5)-(3.8) we easily 
find from (3.17) 

q'(KS°)~ o~(s)-~ = g(og, S) 
k ( T ~ -  To) 

3 ~ 3 -~ f l  ~ e3 - F ( ½ ) S - ~ -  F(~-~ S-~ p2e-9-gO(O'P)dP" (3.20) 

0 0.2 0.4 0.6 0.8 I 
~S 

Figure 7. Local-heat-transfer function defined by Eq. (3.20). 

The function g(o9, S) has been sketched in Fig. 7 for various values of o9 and S. When 
interpreting these graphs we ought to keep in mind that the true S-dependence of qw is given 
by the function e(s)½g(og, S). This means that, as expected, heat transfer is large when the 
normal derivative of the longitudinal velocity component is large. Therefore, heat-flux 
profiles such as have been found by Burggraf [-7] can be understood in the light of the 
present analysis. 

For etching problems the local mass-transfer rate is of primary importance. We therefore 
present a detailed tabulation of the function g(og, S) in Tables 1 and 2. For S ~ 0 the function 
g becomes singular. Its behaviour can be obtained from Eq. (3.20) and is found to be 

3+ {1 - O(O,O)}S -6. g(o9, S)  ~ (3.21) 
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TABLE 1 
The function g(o~, S). 

H . K .  Kuiken 

\ 

0.01 0.02 0.03 0.04 0.06 0.08 0.10 0.12 0.16 

0.0 2.4988 1 . 9 8 3 3  1 . 7 3 2 6  1 . 5 7 4 2  1 . 3 7 5 2  1 . 2 4 9 4  1 . 1 5 9 9  1 . 0 9 1 5  0.9917 
0.1 2.2191 1 . 7 6 0 3  1 . 5 3 6 9  1 . 3 9 5 7  1 . 2 1 8 3  1 . 1 0 6 3  1 . 0 2 6 4  0 . 9 6 5 4  0.8763 
0.2 1.9873 1 . 5 7 3 4  1 . 3 7 1 4  1 . 2 4 3 6  1 . 0 8 2 9  0 . 9 8 1 3  0 . 9 0 8 7  0 . 8 5 3 3  0.7721 
0.3 1.8068 1 . 4 2 5 8  1 . 2 3 9 3  1 . 1 2 1 0  0 . 9 7 2 0  0 . 8 7 7 6  0 . 8 1 0 1  0 . 7 5 8 4  0.6826 
0.4 1.6690 1 . 3 1 1 1  1 . 1 3 5 4  1 . 0 2 3 6  0 . 8 8 2 5  0 . 7 9 2 9  0 . 7 2 8 7  0 . 6 7 9 5  0.6072 
0.6 1.4811 1 . 1 5 0 5  0 . 9 8 6 6  0 . 8 8 1 9  0 . 7 4 9 2  0 . 6 6 4 7  0 . 6 0 4 1  0 . 5 5 7 7  0.4900 
0.8 1.3624 1 . 0 4 4 2  0 . 8 8 5 4  0 . 7 8 3 5  0 . 6 5 4 2  0 .5 7 2 1  0 . 5 1 3 5  0 . 4 6 8 8  0.4043 
1.0 1.2802 0 . 9 6 7 2  0 . 8 1 0 1  0 . 7 0 9 2  0 . 5 8 1 5  0 . 5 0 0 9  0 . 4 4 3 9  0 . 4 0 0 9  0.3397 
1.2 1.2183 0 . 9 0 6 9  0 . 7 5 0 1  0 . 6 4 9 4  0 . 5 2 2 8  0 . 4 4 3 7  0 . 3 8 8 5  0 . 3 4 7 3  0.2897 
1.5 1.1466 0 . 8 3 4 3  0 . 6 7 7 0  0 . 5 7 6 7  0 . 4 5 2 0  0 . 3 7 5 8  0 . 3 2 3 6  0 . 2 8 5 5  0.2335 
2.0 1.0556 0 . 7 3 9 5  0 . 5 8 1 8  0 . 4 8 3 0  0 . 3 6 3 7  0 . 2 9 3 6  0 . 2 4 7 4  0 . 2 1 4 5  0.1711 
2.5 0.9796 0 . 6 6 2 6  0 . 5 0 6 9  0 . 4 1 1 4  0 . 2 9 9 8  0 . 2 3 6 6  0 . 1 9 6 1  0 . 1 6 8 0  0.1318 
3.0 0.9152 0 . 5 9 7 6  0 . 4 4 5 4  0 . 3 5 4 4  0 . 2 5 1 2  0 . 1 9 4 8  0 . 1 5 9 5  0 . 1 3 5 4  0.1049 
4.0 0.8041 0 . 4 9 2 4  0 . 3 5 1 3  0 . 2 7 0 9  0 . 1 8 2 4  0 . 1 3 9 3  0 . 1 1 2 2  0 . 0 9 4 2  0.0719 

6.0 0.6304 0 . 3 4 8 9  0 . 2 3 4 4  0 . 1 7 3 6  0 . 1 1 2 4  0 . 0 8 2 8  0 . 0 6 5 6  0 . 0 5 4 5  0.0411 
8.0 0.5035 0 . 2 5 9 6  0 . 1 6 8 0  0 . 1 2 1 5  0 . 0 7 6 6  0 . 0 5 5 7  0 . 0 4 3 9  0 . 0 3 6 3  0.0273 

10.0 0.4100 0 . 2 0 1 1  0 . 1 2 6 9  0 . 0 9 0 3  0 . 0 5 5 9  0 . 0 4 0 4  0 . 0 3 1 7  0 . 0 2 6 3  0.0198 

TABLE 2 
~e~nctiong(w,S) 

\ 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.0 0.9206 0 . 8 0 4 2  0 . 7 3 0 7  0 . 6 7 8 3  0 . 6 3 8 3  0 . 6 0 6 3  0 . 5 7 9 9  0 . 5 5 7 6  0.5384 
0.1 0.8128 0 . 7 0 8 7  0 . 6 4 2 8  0 . 5 9 5 8  0 . 5 5 9 9  0 . 5 3 1 1  0 . 5 0 7 4  0 . 4 8 7 3  0.4700 
0.2 0.7141 0 . 6 1 8 8  0 . 5 5 8 4  0 . 5 1 5 3  0 . 4 8 2 4  0 . 4 5 6 1  0 . 4 3 4 5  0 . 4 1 6 2  0.4004 
0.3 0.6284 0 . 5 3 9 2  0 . 4 8 2 9  0 . 4 4 2 8  0 . 4 1 2 5  0 . 3 8 8 3  0 . 3 6 8 6  0 . 3 5 2 0  0.3378 
0.4 0.5556 0 . 4 7 1 0  0 . 4 1 7 9  0 . 3 8 0 7  0 . 3 5 2 6  0 . 3 3 0 6  0 . 3 1 2 7  0 . 2 9 7 8  0.2852 

0.6 0.4419 0 . 3 6 4 6  0 . 3 1 7 6  0 . 2 8 5 5  0 . 2 6 1 9  0 . 2 4 3 8  0 . 2 2 9 3  0 . 2 1 7 5  0.20?5 
0.8 0.3593 0 . 2 8 8 9  0 . 2 4 7 6  0 . 2 2 0 2  0 . 2 0 0 5  0 . 1 8 5 6  0 . 1 7 3 8  0 . 1 6 4 3  0.1564 
1.0 0.2979 0 . 2 3 4 3  0 . 1 9 8 2  0 . 1 7 4 7  0 . 1 5 8 3  0 . 1 4 5 9  0 . 1 3 6 3  0 . 1 2 8 5  0.1222 
1.2 0.2511 0 . 1 9 3 9  0 . 1 6 2 4  0 . 1 4 2 3  0 . 1 2 8 3  0 . 1 1 8 0  0 . 1 0 9 9  0 . 1 0 3 5  0.0983 
1.5 0.1995 0 . 1 5 0 8  0 . 1 2 4 9  0 . 1 0 8 7  0 . 0 9 7 6  0 . 0 8 9 4  0 . 0 8 3 1  0 . 0 7 8 2  0.0741 
2.0 0.1439 0 . 1 0 6 2  0 . 0 8 6 8  0 . 0 7 5 0  0 . 0 6 7 0  0 . 0 6 1 2  0 . 0 5 6 8  0 . 0 5 3 3  0.0504 
2.5 0.1095 0 . 0 7 9 6  0 . 0 6 4 6  0 . 0 5 5 6  0 . 0 4 9 6  0 . 0 4 5 3  0 . 0 4 2 0  0 . 0 3 9 4  0.0373 
3.0 0.0866 0 . 0 6 2 3  0 . 0 5 0 3  0 . 0 4 3 2  0 . 0 3 8 4  0 . 0 3 5 0  0 . 0 3 2 5  0 . 0 3 0 4  0.0288 
4.0 0.0588 0 . 0 4 1 8  0 . 0 3 3 6  0 . 0 2 8 7  0 . 0 2 5 5  0 . 0 2 3 2  0 . 0 2 1 5  0 . 0 2 0 1  0.0190 
6.0 0.0334 0 . 0 2 3 5  0 . 0 1 8 8  0 . 0 1 6 0  0 . 0 1 4 2  0 . 0 1 2 9  0 . 0 1 1 9  0 . 0 1 1 1  0.0105 
8.0 0.0222 0 . 0 1 5 6  0 . 0 1 2 5  0 . 0 1 0 6  0 . 0 0 9 4  0 . 0 0 8 5  0 . 0 0 7 9  0 . 0 0 7 3  0.0069 

10.0 0.0161 0 . 0 1 1 3  0 . 0 0 9 0  0 . 0 0 7 7  0 . 0 0 6 8  0 . 0 0 6 1  0 . 0 0 5 7  0 . 0 0 5 3  0.0050 
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Here it should be emphasized that 0(0, 0) refers to the initial profile which is obtained from 
(3.13). The value of 0(0, 0) is given in Table 3. For very small and very large values of 09 the 
information of the tables will be supplemented by asymptotic results to be obtained in the 
following sections. 

TABLE 3 

7he constant occurring in Eq. (3.21)for various values of  to. 

~o 0.05 0.1 0.2 0.3 0.4 0.6 0.8 1.0 
0(0, 0) 0 . 0 5 7 8  0 . 1 1 1 1  0 . 2 0 1 4  0 . 2 6 9 9  0 . 3 2 0 5  0 . 3 8 5 5  0 . 4 2 2 2  0.4444 

o9 1.5 2.0 3.0 4.0 6.0 8.0 10.0 
0(0, 0) 0 . 4 7 1 6  0 . 4 8 3 0  0 . 4 9 2 1  0 . 4 9 5 5  0 . 4 9 8 0  0 . 4 9 8 8  0.4993 

The total heat transfer Qw from the cavity is of particular interest. Since we have 

~ O 

Qw = qw(S) ds 

we can easily derive from (3.20), using the transformations (3.5)-(3.8) 

Q.{(KSo) -} + (KXo) 
pc .( Tw - To) 

=(1+ 2 o){ 

= f ( o g )  = 

1 1 p 3  
(3.22) 

The function fgo)  is shown in Fig. 8. A careful examination of (3.21) and Fig. 8 shows again 
that for co ~ oo it is the phenomena at the orifice that set a limit to heat transfer, whereas for 
o~ ~ 0 it is those at the cavity wall. To explain this we consider the relative magnitude of the 
terms (xSo)-~ and (xXo)-~ and the fact that f(og) is of order unity and boundedly away from 
zero .  

O.S 

~7 

O.6 

O.5 

I 
O.01 2 

I I 
5 0 . 1 2  

----.._....__ 

] I I I i 
5 1 2 5 10 2 5 100 

= 0 9  

Figure 8. Overall-heat-transfer function defined by Eq. (3.22). 
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4. The  case  co <~ 1 

It will be of interest to present a more detailed description of the solution valid for co ~ 0. To 
do this we shall start from the differential equations and boundary conditions (3.9)-(3.15). 
The condition (3.13) is of special interest. Suppose that for co ~ 0 the variable Y remains the 
natural variable measuring the width of the free boundary layer in the mixing region. Then 
we see from (3.13) that the width of the initial profile 0(0, N) cannot be measured by 
variations of N that are of order unity. The natural boundary-layer variable in the vicinity of 
the cavity wall seems to be 

= Nco ½ (4.1) 

which we shall call the outer variable. Introducing the outer temperature 

O(s, ~) = o(s, gco- ~) (4.2) 

we may transform the differential equation of (3.10) into 

00 = co~7-1 026 
0S ~ "  (4.3) 

It is easy to see that this equation is satisfied by the following asymptotic expansion 

3 m  
m, co-~-S m i /_  0 2 \m  3 ( m ,  + 1) 

O(S, .N) = Z m! ,9(1, ]~2) ..~ 0{03 2 } (4.4) 
m = O  

For S ~ 0 this expansion satisfies the requisite condition given by (3.13). It is obvious that 
the condition at infinity, given by (3.10), is satisfied by (4,4) if '9(1, Y) tends to a constant 
when Y ~ oo. For 57 ~ 0, however, the expansion (4.4) can by no means yield the proper 
value ~7 = 1. We shall have to introduce an inner layer near the cavity wall in which diffsion 
and convection are in balance. Since the two terms of the equation (3.10) are to be of equal 
importance, it follows that N is the natural inner variable. Introducing the inner tempera- 
ture 

O(S, N) = O(S, N) (4.5) 

and expanding the second of the conditions given by (3.13) for small values of co, we are led 
to introduce an inner expansion 

ra 2 

" N O= Y~ co O,,(S, ). (4.6) 
m = O  

Each of the expansion functions satisfies the differential equation (3.10). At N = 0 we have 

1, m = O  (4.7) 
Ore= O, m # O  
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while at S = 0 we have 

N TM 
0,,(0, N) = m! °qtm)(l' 0) (4.8) 

where o arm) stands for the m th derivative of ~ with respect to the second argument. It may be 
emphasized that the derivatives of 0 in (4.4) and (4.8) are still functions of ~o. If the problem 
had been non-linear we should have had to do the analysis on a term-by-term basis, 
determining unknown terms as we go along. However, now that the problem is linear we 
may concentrate on the N-dependence of the solution and establish the full m-dependence in 
the process. 

Omitting details, we obtain the solution 

O= \ 3 '  9S / .,2 3~--F@m + l ) + E  
4 T r ( 1 )  m = o r ( ~ ) m .  

× 

2.,-1 / 1 - 2 m  4 N 3 ) 
x dn0~')(1, O ) N ~ - M  ~ -3- ' 3'  9S + O(eom2+l) (4.9) 

where M(a, b, z) is the Confluent Hypergeometric function that admits the expansion 

o~ (a)m z m 
M(a, b, z) = 52 

m=0 (b)m m! 

where 

( a ) m = a ( a - 1 ) ( a - 2 ) . . . ( a - m + l ) ,  (a)o= 1. 

A generally valid solution is obtained by the expression 

0 = 0 + O -  CP (4.10) 

where CP is the common part of 0and 0. As is well known, this common part can be derived 
by evaluating (4.4) for small values of .g and by evaluating (4.9) for N >> 1. The common 
part of the resulting two expressions is the common part of the expansions (4.4) and (4.9). 
We find 

(2 i ' ]  ( 2 i -  1~ 

mz N2iogioq,i)(1, O ) m, \ 3  ],n \ 3 /,n (9S'~ m (4.11) 
C P =  i=oZ i! m=0Z m! \ N 3 ]  ' 

The heat-transfer problem near the cavity wall has now been solved formally for a given 
initial temperature profile. But of course the temperature profile at the entrance of the cavity 
is unknown. We have to complete the circle by writing (4.10) at S = 1, translating the 
resulting expression into an initial condition for the free boundary layer by making use of 
the first condition of (3.13) and solving the equation for the free boundary layer. In order not 
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to make things unduly complicated we shall only use two-term expansions for ~ and/7, i.e. 
m~ = m 2 = 1. From the general solution for the free boundary layer (3.16) we then see that 
the temperature profile ~9(1, Y) must satisfy the equation 

1-8(1,0) fo  /1  P~ \  (r-~v)2 8(1, Y)= L#,{,9(1, Y)} +co ~ r~ff ,~- )e-  4 dP+ 

(p_ y)2 

co~ ~{p-½ota)(1, p) + 2p½ot2)(1, P)}e - 4 dP + 
+rt½ Jo 

+co2Om(l'O) f :  e -  ~ [- ~3)  p2M( 143,3, P a ) _ p 3 _ 2 } d P  + 

+ higher orders of co, (4.12) 

where 

Z~al{G(Y)} = 2 ~ - J o  e -  4 G(P)dP. (4.13) 

For small values of co we have 

, ~ -  e 4 dP~ 

,-~e-4- 3 ~ -~ 2 Yco + 3F(~)(Y2 - 1)co2 + 0(co3) " (4.14) 

Although this expansion is not uniformly valid on the interval [0, oo) it can be used with 
success if co is small enough. The reason is that the incomplete Gamma function behaves 
exponentially if the argument tends to infinity. This means that for co ~ 1 the corrections to 
(4.14) are exponentially small. The same cannot be said of the integral involving the 
Confluent Hypergeometric function. This function behaves algebraically for large values of 
the argument. However, the leading term of an expansion of this integral valid for co ~ 0 
can de obtained by simply putting co = 0 under the integral sign. 

We can now solve equation (4.12) by substituting the series 

8(1, Y) = coFx(Y ) + co2F2(Y) + cogFa(Y) + co3F4(Y) + o(co 3) (4.15) 

where the F i satisfy the equations 

3 ~ y2 
Fx(Y ) ' ~a(F~) + )~32n½F'l ~ e - T ,  (4.16) 

3~r(z) ~ 
F2(Y ) = ~1(F2) + 4g½F(~ ) Y e - T  

3 ~ y2 

2n~r(~) Fx (0) e-  T ,  (4.17) 

1 ~'c~ (y _p)2 
F3(Y)= Zel(F3)+-~-~o {p-½F'I(p)+ 2P½F'~(p)}e- 4 dP, (4.18) 
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y2 

F4(Y) = L~a,(F4) + 3 ( y 2 _  1)e-~- 
2re ½ 

~- (2 y2 
3 r s )  

4r:~r(~) F1 (0) Y e - ,  - 

3~ y2 3¢ r ( ] )  y2 
2rc~r(]) F2(0)e-~- 2ze ½ F(~) F ; ( 0 ) e - T .  (4.19) 

These are integral equations of the Wiener-Hopf type. Eq. (4.16) in particular was 
considered by Stewartson [14], but his analysis is very complicated. We have therefore 
solved these equations numerically, which can be done in a straightforward manner if we 

apply the technique described earlier in this paper. 
Once the asymptotic expansion for ~9(1, Y) is known, we are in a position to derive all the 

relevant results for 09 ~ 0. The non-dimensional temperature in the core of the cavity is 

obtained by the calculation of 0(1, ~) .  We find 

~9 c = 1.6151o9 + 0.402109 2 - 1.15609 ¢ + 3.013093 + 0(o93). (4.20) 

For  the function g(09, S), which according to (3.20) characterizes local heat transfer at the 

cavity wall, we get an explicit expression 

9(09, S) = 0.53836S -~ - 0.64076S-¢09 + 

+ (0.30156S -~ - 0.92219S¢)09 2 + 0.10109~S -~ + 

+ (0.33995S -¢ - 1.0422S ¢ + 1.1872S)09 3 + 0(093). (4.21) 

Finally, the overall heat-transfer function f(09), which was introduced in Eq. (3.21), can be 

given as 

f(09) = 0.80754 + 0.653909 - 2.1616092 + 0.1515o) ¢ - 0.1567093 + 0(093). (4.22) 

5. The case 09 >> 1 

At the other end of the 09-scale the solution can also be given in asymptotic form. We expect 
that now it will be the free boundary layer which reveals a double.layer character. If we 
write the first of the patching conditions (3.13) as 

8(0, Y) = 0(1, Y½09-½) (5.1) 

we find that the natural coordinate for the outer part of the free boundary layer is 

I 7 = co- 1 y. (5.2) 

If we define an outer temperature 

5(X, r )  = 0(x ,  0917) (5.3) 

we see that the equation resulting from (3.9) is satisfied by 
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m, X"O9-  2" ~32" 
5 = E m! ~317z,,, 0(1, I7½) + 0(o9-2",-1). (5.4) 

" = 0  

It should be clear that this solution is only valid in the region I7 > 0. Indeed, the validity of 
the patching condition (5.1) is restricted to that region. We must therefore search for a 
solution that is valid in the remaining part of the interval - oo < Y < ~ .  To do so we shall 
define an inner temperature 

,9(X, Y) = O(X, Y) (5.5) 

Expanding (5.1) for large values of o9 we see that the inner temperature satisfies the 
condition 

m " 

"2 CO- 2 Y2 "2+1 
~q(O,Y)= 2 m ~ O ° " ) ( 1 ,  O)+O(o9 - 2 ), (V~>O) (5.6) 

" = 0  

where the superscript (m) denotes the mth derivative with respect to the second argument. 
We also have 

~(0, Y) -O,  (Y<O). (5.7) 

Just as in the previous section, the function 0 in (5.4) and (5.6) is still dependent on co. Again, 
the linearity of the problem allows us to proceed without a detailed knowledge of this 
functional dependence. It would seem that the inner solution can be given as the asymptotic 
expansion 

~= 
m 2 + 1  

"~ o9-2-O(m)(l'm! O) ,9"(X, Y) + 0(o9- 2 ). 
m = O  

(5.8) 

Each of the expansion functions satisfies the system 

m 

O ~  - OY~' ( Y <  O) (5.9) 

It is not difficult to find the unique solution 

m 

( 4 X ) ¥ { F ( 4  1 )  ( 
- 2n ~ + M 

(m I) Y M(1 
+F T +  /I X ½ \2 

m 1 y 2 )  

4 ' 2 '  4 X  + 

m 3  
4 ' 2 '  ~ -  . (5.10) 

For even values of m these functions are related to the error function, whereas for odd values 
of m the functions are related to parabolic cylinder functions. A generally valid solution can 
be obtained by adding the inner and outer solutions and subtracting the common part 
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m m 

m: o9--i0(')(1, 0)Y~- m, 
o = 5 + , ~ -  57 

,.=o m! v=o 

m 1 m 

r! ~ y 2 / "  (5.11) 

The next step is to determine the value of (5.11) at X = 1. Having done so, we are able to use 
the second of the patching conditions of Eq. (3.13) to derive an initial condition for the wall 
boundary layer. At this point the analysis becomes rather too complicated for a general 
exposition. This is why shall carry out the analysis using only two terms of the inner and two 
terms of the outer expansion, i.e. m~ = m 2 = 1. The initial 0-profile is then 

0,0 , 0,1 ,+0,,0,f e,fc ( 11+ 

O9N2 F(-54 ) ( 1  3 o92 _N4.) _ Og~N} + 
+ ~-5~-~)~ M ,~, 

1A(1)/1 0 ) N -  3}. + 09-2{-¼N-30(1)(1, N) + ¼N-20(2)(1, N) + ~ ,., (5.12) 

In (5.12) we can substitute 0(1, 0) = 1 since this is the boundary condition (3.10). The role 
played by the terms of the common part is clear now. These terms offset the singularities of 
the outer expansion at N = 0 and they offset those terms of the inner expansion that become 
unbounded as N ~ ~ .  

The general solution for the wall boundary layer is given by (3.17). Using this equation for 
S = 1 and substituting Eq. (5.12) we obtain an integral equation for the unknown 
temperature profile 0(1, N): 

/1  Na'X -) 
F(~) t- ~2{0(1, N)} + L P 2 { ½ e r f c ( - - -  

where 

~2(G(N)} - 3 j o  N~P~e - 9 I~(~N~P~)G(P)dp. 

ogN 2 
2 ) -  1}+ . . .  (5.13) 

(5.14) 

In Appendix A we obtain expansions for the integrals occurring in (5.13) that are valid for o9 
~ .  Using these we can write (5.13) as follows 

/1 Naxx 

o(1,Nt_r(  'T)  .3 
F(~) ~ ~9f'2{0(1 , N)} 3~F(~) Se -Yo9  -~ + 

2 ( N 3 )  N3 
+ 3./~F(±)n~N 1 - ~  e - T o o  - 3 -  

3 

3 ~ N 3 

24F(~) Ne-T0(1)(I '  0)o9-2 In o9 + O(o9-~). (5.15) 
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In (5.15) we have already anticipated that 0tl)(1, O) = 0(09-~) .  Since we have 

/1  Na'X 

~('2(1) = 1 F(-~) (5.16) 

we can solve (5.15) by putting 

0(1, N) = 1 + Gl(N)09-~ + G2(N)09 -a + Ga(N)09-~ In 09 + O(09-~). (5.17) 

Up to the order considered the problem is now reduced to the solution of two integral 
equations of the type 

N3 

Gi(N) = L~2{Gi(N)} + Nie-~ - (i = 1, 4) (5.18) 

and we have solved these equations numerically. We are now in a position to derive some 
important asymptotic results. We may obtain an expression for the core temperature by 
evaluating (5.17) for large values of N 

0 c = 1 - 0.2410809 -~ + 0.0194709 -~ In 09 + O(09-~). (5.19) 

We found numerically that the term which is proportional to 09-3 is cancelled in Eq. (5.19). 
It is also a rather straightforward matter to derive an expression for the function f(09), 

which was defined in Eq. (3.21) and which characterizes the total heat transfer from the 
cavity. Without going through the tedium of giving all the analytical details, we can state the 
following result 

f(09)=(1+209){2+ 09.1+(2~½~G'~(O)09-3+higher°rders}k~z/ ~tS, 

= 0.5642 + 0.282109-1 - 0.0848o9-2 + . . .  (5.20) 

To conclude this section we shall derive an asymptotic result for the local-heat-transfer 
function g(09, S) defined by Eq. (3.20). From (5.12) and (5.17) it follows that we may write 

O(O,P) , -~½erfc (09P2)  +09-~Gl(P)+2 higher orders (5.21) 

and we can substitute this in (3.20). Omitting details of the analytical derivation we ca~a state 
the following results. If 

then 

2 3 
- 9S09 ~ ,~ 1 (5.22) 

2 r(¼) 
0(09, S) = ~o ~a ° 

)3  n F(g) 
3-3 p2e_~s_G,(P)dp}. 
F(~) f o  (5.23) 
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This result is tabulated in Table 4. Obviously the local heat transfer behaves as co -~ if 09 
tends to infinity. 

TABLE 4 

S 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
g(o),S)oIS ~ 0.0433 0.0502 0.0599 0.0707 0.0821 0.0940 0.1060 0.1183 0.1307 0.1432 0.1558 

If y is not very small, which can only be the case if S ~ 1, the asymptotic result is 

3 ~ 1 
g(o~ ,S )~~3) l l -~ ( fo  e-~:-~adt}S -~. 

This result is tabulated in Table 5. 

(5.24) 

TABLE 5 

7 0.1 0.2 0.4 0.6 1.0 2.0 4.0 6.0 8.0 10.0 
g(o2,S)S ~ 0.0131 0.0248 0.0451 0 .0620 0.0885 0.1302 0.1708 0.1912 0 .2036 0.2120 

Finally, for 7 >> 1 the result (5.24) may be written asymptotically 

3 ~, 2.3-~ F(2) _~ 2.3 -~ O0,_1o/3) 
g(co, S) ,,- 2F(~) r~ ~ r(-}) y " +  ~ y-2 + . (5.25) 

6. A few simple applications 

A special feature of the present work is that the heat- or mass-transfer analysis can be 
formulated independently of the particular flow field. All the necessary information about 
the flow can be found in the dimensionless variables and the parameter co. However, when it 
comes to applying our results we shall have to know the flow field in order to obtain the 
actual values of co and the dimensional variables. In this chapter we shall apply our results to 
a few simple flows with closed streamlines. In order to keep the complication of the analysis 
within reasonable bounds, we shall use a prescribed velocity on the dividing streamline, i.e. 
we shall restrict ourselves to closed cavities. 

The first example is that of a circular cavity with part of its circumference moving at a 
uniform azimuthal velocity u o. If we use cylindrical coordinates (r, 0), with - n < 0 < n, the 
circumference will be at r = r o and its moving part is restricted to the in te rva l -  ~o/2 < 0 
< ~0/2. If we assume a Reynolds number Uoro/V that is much less than unity, we can use the 
solution for the stream function q/as it was given by Burggraf [7] 

Journal of Enoineerin # Math., Vol. 12 (1978) 129-155 



148 H. K. Kuiken 

Uor o 2 ~  +a rc t an  1 - R c o s ( 0 + W 2 )  - 

- arctan 1 - R cos(0 - W2) (6.1) 

where R = r/r o. From this we may easily obtain the normal derivative of the azimuthal 
velocity at the non-moving part of the circumference (101 > ~/2) 

OzV u o 1 tn - c t n k - - ~ j j .  
= , o -  r o 

(6.2) 

From (3.14) we can derive an expression for e~ valid for the present case 

( X r o  ~ ( f ~  I ~ e~ = \4U3o~Oa } ~dO . (6.3) 
\ dtp]2 / 

If we substitute (6.2) in (6.3) we find 

with 

e J P e ' = ( 2 t ' ( s i n ~ / 2 1 ~  (1+ t2)  -1 c o s 2 + t s i n ~ -  ) dt~ 
\ ~ J /  \ ~ ,] [ an~o/2 

(6.4) 

Pe = u°r°~° (6.5) 
K 

In (6.5) we have chosen ro~0, the length of the moving part of the circumference, as the 
characteristic length. A graphical representation of the function (6.4) can be found in Fig. 9, 
where we have used for the abscissa the ratio of the length of the moving part and the total 
length of the circumference. It is clear that ~o tends to zero if the Pbclet number becomes 
larger. However, due to the smallness of the power to which the P6clet number is being 
raised in (6.4), we can still have values of e~ that differ markedly from zero when Pe is only 
moderately large. Fig. 9 shows that this is particularly true if the moving part of the cavity 
boundary is relatively short. 

~Pe~/6 2 

l f.S 

0.5 
0 OJ 0.2 0.3 0.4 0.5 

Figure 9. coPe ~ as a function of ft. Solid line: circular cavity; asterisks: rectangular cavity. 
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i 
i 

ilt 
Figure 10. Geometry used for rectangular cavity. 

As a second example we shall consider a rectangular cavity which has one of its sides 
moving with a velocity u o in a longitudinal direction. The geometry of the system is sketched 
in Fig. 10. If we again consider the case of creeping flow, i.e. if uol/v ~ 1, the stream function 

will satisfy the biharmonic equation. In terms of the non-dimensional quantities ~u 
= 2q//(uol), X = 2x/1, Y =  2y/l, the flow is described by the following equation and 
boundary conditions 

AA ~u = 0 (6.6) 

x = 0 :  ~g = 0 ,  ~Ux=0, 

X = 1: ~u x = 0 (line of symmetry), 

Y = 0 :  ~u = 0 ,  ~ r = 0 ,  

Y =  Yo=2d/h ~u = 0 ,  ~u r = - l .  

(6.7) 

From (3.14) we may now easily derive the result 

where 

P e -  u°l 
~c 

(6.8) 

Quite a few authors have considered the problem defined by (6.6) and (6.7), e.g. Burggraf [7] 
and Pan and Acrivos [101, but they were mainly interested in the stream-line pattern. In any 
case, numerical values for the second derivatives of ~ at the cavity wall cannot be obtained 
from the literature. This is why we had to solve the problem again and we decided to use the 
numerical software package ASKA, which employs finite elements. We did some runs for a 
few values of Yo- Some of the results can be found in Fig. 11, where we display 7t~rr along the 
first half of the bottom wall of the cavity and ~U~xx along one of the side walls. In the 
neighbourhood of the corner, where both sides meet, the graphs have not been drawn since 
~xx and ~yr change sign. Indeed, it has been known for some time (Moffatt [15]) that there 
exists an infinite sequence of eddies of ever diminishing strength in sharp corners. In terms of 
our heat-transfer model, described in section two, this means that the wall boundary layer is 
split up into two parts near every corner. The connection between the two parts is furnished 
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l '  
O.S 

2 0.5 

1 x x . 

0 
7 0.5 0 a5 1 LS 2 

X " ' - -  " - - " "  Y 

Figure 11. The local-heat-transfer function ~ at the wall of the rectangular cavity for various values of Yo = 2d/l. 

by a free boundary layer along the dividing stream line in the corner. However, it appears 
from Fig. 11 that such a refined approach will but slightly improve the results. We shall 
therefore neglect the contribution of the corner and consider the wall boundary layer as 
continuous. 

If we substitute our numerical results in Eq. (6.8) we obtain the results given by asterisks 
in Fig. 9. A further striking result is the fact that co is virtually constant for a consider- 
able range of aspect ratios. Since the overall heat transfer - or mass transfer in the case of 
etching - is a function of co only, this result seems to confirm the observation reported 
by Goosen and Van Ruler 1-4] that the etching speed is constant in the initial stages of the 
etching process, i.e. as long as the single-cell approach is valid. 

Since the integrand of the first integral of (6.8) becomes singular if y ~ Y0, it will be 

necessary to employ an analytical representation of ~ in the neighbourhood of Y = Y0" It is 
not difficult to prove that the solution valid near the corner where the moving wall and the 
side wall meet, is given by 

} 4 (Y0 - Y) - + ~-  (Yo - Y) arctan 

= n2 (6.9) 
- - -  1 

4 

from which we may derive 

(~xx)~x = o = (zc2/4 _ 1)Y- " (6.10) 

The analytical solution (6.10) provides a good test for the accuracy of the computations 
done with ASKA. 

The examples we have given both involve the assumption Re ,~ 1. For large yalues of the 
Reynolds number, flows within cavities are usually more complicated. We shall therefore 
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confine ourselves to making some qualitative remarks on the application of our results to 
such flows. For Re >> 1, Batchelor [9] has shown that the flow consists of an inviscid core of 
uniform vorticity. The no-slip condition at the wall demands the introduction of a viscous 
boundary layer. The longitudinal velocity uc at the outer edge of the boundary layer can be 
calculated from the state of uniform vorticity in the core. If I is a characteristic length along 
the cavity wall we find 

( u 3 ~ .  (6.11) 
~ = O \  vl ] 

If a part of the cavity wall of length 61 moves at a velocity u o, we find 

o9 ~ P r - + (  uc ~½ (6.12) 
\ Uo~ } 

where 

1: 
Pr 

is the Prandtl number. For the cylindrical cavity introduced earlier Batchelor [9] gives the 
result u c = Uo6½, which yields 

o9 ~ Pr-*~  -~'. (6.14) 

7. Discussion of the results 

In this paper we have made an attempt to devise a mathematical model for heat or mass 
transfer from cavity flows. The model is valid when both the P6clet number, based on cavity 
dimensions, and the Prandtl number are large. Despite these restrictions we expect that the 
model can be applied to a variety of situations. Indeed, in bio-fluid mechanics most fluids do 
have a large Prandtl number. The large Prandtl number condition is also met by etching 
fluids and lubrication oils. Due to the extremely low diflusivities of most of these fluids, the 
large-Pe condition will be violated only if flow velocities and cavity dimensions are 
exceedingly small. Goosen and Van Ruler [4], for example, use etching fluids with 
diflusivities as low as 10-9 m2/s. Thus, for cavity dimensions as small as 10-5 m and flow 
velocities of 10-1 m/s, the P6clet number is still of the order of one thousand. 

At its present stage of development the model cannot be applied to gases, the reason being 
that for most gases Pr ~ 1. The complication of the model will increase considerably if its 
range of applicability is to include gases. Indeed, for Pr ~ 1 the convection terms can no 
longer be simplified in the manner of section two. At this moment it is not clear if the simple 
analysis given in section three, involving integral equations, can be done if Pr ~ 1. 

Since much of the work on heat transfer from open cavities has been done for air (e.g. 
Miles [5], Haugen and Dhanak [16], Fox [17]) a comparison with previous work can only 
be qualitative. Haugen and Dhanak did experiments on turbulent flows over open cavities. 
The temperature profiles measured by them do support the boundary-layer assumption 
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used by us. Their measurements reveal a virtually isothermal core and near the orifice and 
the bottom of the cavity they find temperature profiles which are clearly of a boundary-layer 
nature. It is interesting to note that for deeper cavities these authors measured temperature 
profiles that can be explained by the multiple boundary-layer model which applies when 
there is more than one vortex. We put forward this idea in the introduction to explain a 
sudden drop in etching speed. The temperature profiles measured by Haugen et al. for 
deeper cavities show that the temperature rises again in the lower part of the cavity after 
having been constant over most of the upper vortex. 

In the introduction we mentioned thrombogenesis as a possible application of the present 
work. Benis et al. [18] did some experimental work in this field. They studied thrombus 
formation in a cavity introduced in an extracorporeal shunt joining the carotid artery and 
the jugular vein of a dog. From Fig. 2 of their paper we may conclude that thrombus 
formation is inversely proportional to the square root of the Reynolds number. This result 
may be explained by our analysis if we assume that 09 was large in the experiments 
performed by Benis et al. Indeed, from (3.22) we may then conclude that mass transfer from 
the cavity increases proportionally to Xo ~. We may expect that larger mass-transfer rates will 
slow down the growth of a thrombus. 

From a paper by C. G. Caro, J. M. Fitz-Gerald and R. C. Schroter [19] it appears that 
some forms of early atheroma may be explained along the same lines as thrombogenesis. 
Atheroma is a degeneration of the arterial wall which leads to hardening of the arteries. It is 
thought that cholesterol synthesized within the blood stream is instrumental in thin 
degenerative process. Caro et al. discovered that this phenomenon was to be found in 
regions of low wall shear stress. It was particularly conspicuous in regions of separated 
blood flow that are to be found directly downstream of junctions of large arteries. These 
authors put the Schmidt number associated with cholesterol diffusion at about 10 5. Also, in 
large arteries the Reynolds number is ~ 102-10 3, SO that ReSc >> 1. This shows that our 
cavity model may be applied to describe diffusion of cholesterol in regions of separated 
blood flow and to give a quantitative account of incipient atheroma. 

To conclude we shall discuss possible extensions of the present work. An important 
generalization will be the two-cell model referred to earlier and which applies to cavities of 
depth-width ratios roughly between one and two. This case will feature two free boundary 
layers, one near the orifice of the cavity and one along the streamline dividing the two cells. 
There will be three separate wall boundary layers now, two of which will join the ends of the 
free boundary layers along the rim of the upper vortex. The third of the wall boundary layers 
will be along the remaining part of the lower cell. Mathematically the solution will be 
governed by a set of five coupled integral equations and it is likely that more than one 
parameter such as 09 will influence the problem. Extensions to more cells are easily 
envisaged but clearly the numerical complication will increase correspondingly. A some- 
what simpler extension applies when the free stream follows the cavity wall part of the way 
down before separation occurs. In that case there will be a wall boundary layer along that 
portion of the cavity wall that produces a non-uniform temperature or concentration profile 
at the point of separation where the free boundary layer emerges. The analysis of this paper 
applies almost unaltered to this situation. The only change will be in the boundary condition 
(2.9), where now the effect of the above-mentioned wall boundary layer will be felt. 
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Nomenclature (most important symbols only) 
¢: 

f: 
g: 
k: 
I: 
n: 
N: 
Pe: 
Pr: 
q~: 

Re: 
s: 

$o: 
S: 
So: 
T: 
to: 

L: 
u: 

Uo: 

x:  

No: 
32: 

Xo: 
y: 
Y: 

K: 

0: 

~,: 

heat capacity 
dimensionsless function related to total heat transfer (3.22) 
dimensionless function related to local heat transfer (3.20) 
thermal conductivity 
characteristic length 
dimensional coordinate measuring distance from cavity wall 
dimensionless coordinate measuring distance from cavity wall 
P~clet number: uol/t¢ 
Prandtl number: v/x 
local heat transfer 
total heat transfer 
Reynolds number: uol/v 
dimensional coordinate measuring distance along cavity wall 
length of cavity wall 
dimensionless coordinate measuring distance along cavity wall 
parameter defined by (3.8) 
temperature in free boundary layer 
temperature of the surrounding fluid 
temperature in the core 
temperature in the wall boundary layer 
temperature of the cavity wall 
longitudinal velocity in free boundary layer 
characteristic velocity in free boundary layer 
dimensional coordinate measuring distance along free boundary layer 
length of free boundary layer 
dimensionless coordinate measuring distance along free boundary layer 
parameter defined by (3.4) 
dimensional coordinate measuring distance from dividing stream line 
dimensionless coordinate measuring distance from dividing stream line 
normal derivative of longitudinal velocity at cavity wall 
relative length of free boundary layer 
thickness of wall boundary layer 
thickness of free boundary layer 
thermal diffusivity: k/p/c 
kinematic viscosity 
dimensionless temperature in wall boundary layer 
dimensionless temperature in free boundary layer 
dimensional stream function 
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~: dimensionless stream function 
co: parameter defined by (3.14) 
p: density 

Appendix A. The asymptotic behaviour for ~ --, oo of  certain integrals occurring in Eq. 

(5.13) 

The expansion of..,c'.a2{K(co , N)} for co ~ oo is very simple if 

K = ½ e r f c ( c o N 2 )  - 1 2  

and will not be carried out in detail here. One only has to introduce the new variable P 
= co½P under the integral sign and expand the co-dependent part of the integrand for co >> 1. 
This procedure is simple since K(co, N) behaves exponentially if N - oo. 

For 

( 1 1 co4N4)+coN2F(¼)M(1 3 co4 N'*) K(co, N) = F(¼)M 4' 2' ' 2' - co½N (A.1) 

the analysis is not so trivial. Now the function K behaves algebraically if N ~ oo. Indeed, 

K ~ 4co~N~ + O ( c o - ~ N  - 7 )  if co½N --* ~ .  (A.2) 

We now split up the integral occurring inAa2 into two parts, 0 - Aco -~ and Aco - t  ~ oo, 
where A is a large but fixed number. This means that in the second integral we may use the 
expansion (A.2). The first integral is easily seen to be O(co -~) and the second can be written 

N 3 

N ½e-T p_~e-~-i~(~N~P~)dp. 
12co~ ,o-~ 

(A.3) 

For co -~ oo the lower bound in (A.3) will tend to zero. The integrand, however, behaves as 
p -  1 if P -~ 0. This means that the integral occurring in (A.3) will be ~ In co if co -~ oo. 
Omitting details we have 

3 ~ N 3 
L~a2{K(CO, N)} - )~24Fn ~ N e - T c o - ~  In co + 0(09 -3) (A.4) 

if co -~ oo, where K is given by (A. 1). 
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